Solar WIMP Studies with *IceCube* and *DeepCore*

- •WIMP searches with IceCube and DeepCore
- •Differences to initial study (done by Gustav Wikström)
- •Reconstruction and higher level filtering
- •Effective Volume
- •Expected sensitivities on muon flux from WIMP-annih. in the Sun and SD WIMP-proton cross-section
- •Explanation of Result

Investigated WIMP models:

Neutralino:

Soft (bb) and hard (W+W-/τ+τ-) for energies (50, 100, 250, 500, 1000, 3000, 5000) in GeV

LKP:

• 'true' composition from LKP annihilations (fixed branching ratios) for energies (300, 500, 700, 900, 1100, 1300, 1500) in GeV

Sun

DM

WIMP Search with IC80+DC6

Simulated DataSets

2 Detector Configurations:

- IC80+DC6-case, all 80 IceCube strings, DeepCore strings (81,82,83,84,85,86) and additionally the HighQE-DOMs deployed on ICstring 36 are used.
- IC80-case uses 80 'ordinary' IceCube strings without any extensions or HighQE-DOMs on string 36. (reference Detector)

	Single Muon	Coincident Muon	Triple Coin. Muon	atm. Nu
Livetime	~ 1 h	4 h	~ 1 d	~180 d
Simprod Datasets	1509	1511	1550	1560

- IceCube-80 remains the same configuration
- Decreased DOM spacing on DeepCore strings
- HighQE DOMs for DeepCore strings and parts of string 36
- 10 times more single muon and atmospheric neutrino background
- Coincident and triple coincident muon background
- Different Trigger and Reconstruction settings
 - \rightarrow (SMT8 + StringTrigger(5/7;1000ns) + LETrigger(SMT4 for DC+1layer of strings))
 - \rightarrow (reconstruction \rightarrow as close as possible to current standart processing)
- SLC not used so far, only HLC

Level L0 and L1 filtering

(Reconstruction version *IceRecV02-02-00* is used)

L0:

- Broken DOM cleaning
- HLC
- Event time-window of 4500ns

L1:

- *IceCube-Muon-Filter* (only track > 70°)
- *IceCube-Contained-Filter* with a new (IC80+DC6 veto file)
- IceCube-LowUp-Filter

Level L2 filtering

- LLH reconstructed zenith angle $[86^{\circ} < \Theta < 120^{\circ}]$
- z_travel > -30

• Single string events are neglected nstring >1

Level L3 filtering

- $\rho_{av} < 100m$ Sum all strings (Sum of shortest distance from track to string/nchan)
- $z_extern < 400m$ Extension of muon track in z direction in metre (z[max]-z[min])

Level L4 filtering (multivariate)

Level L4 filtering

- var1 = Θ _llh
- var2 = ndir[a]+ndir[b]+ndir[c]+ndir[d]
- var3 = separation
- var $4 = z_{travel}$
- var5 = time_ext
- var6 = cog_z

- var7 = $\rho_a v$
- var8 = rllh
- var9 = 3*nchf-nchv-nchvetolid
- var10 = ndirstr[a]+ndirstr[b]+ndirstr[c]
- $var11 = smoothness_[a+b+c+d]$
- var12 = ldir[a]
- var13 = σ _paraboloid
- For each sample (Detector config./WIMP model)
 - -> try to find best cut on any combination of $Q^{1*}Q^2$
- MRF used to find optimum cut value and method for fixed Ψ [6°(high E)/10°(low E)]
- Additional cuts for (DeepCore/high E)-configuration to remove muon-Bg (ldir[a+b+c+d] > 500m, nstr > 2)
- In the (DC/low E) sample also further cuts on atm. Neutrino Bg (ldir[a/b/c/d] < 300m, smooth[a+b+c+d] > - 0.6, nstr < 8, nveto_str < 3, ndir[a+b+c+d] < 180)

Level L4 filtering

10⁻¹

10⁻²

10⁻³

10-4

10 *

10^{-€}

10

10⁻²

10⁻³

10-

10⁻¹

10⁻⁶ E

Madison Collaboration Meeting

To ensure 'good' muon background reduction (relative short samples)

 \rightarrow cuts are set harder than maybe necessary (cut until 0 coin. Events left)

Expected rates for simulated background-samples:

Level	<u>Muon bkg sum</u>	Single Muon	<u>Coin. Muon</u>	Tripel Coin. Mu	<u>atm. Nu</u>
Trig. level	2303 Hz	1903 Hz	372.5 Hz	27.1 Hz	35.2 mHz
Level 1	396 Hz	242.9 Hz	140.3 Hz	13.3 Hz	22.6 mHz
Level 2	23.3 Hz	12.1 Hz	10.1 Hz	1.1 Hz	5.65 mHz
Level 3	11.5 Hz	7.7 Hz	3.6 Hz	0.23 Hz	5.04 mHz
Level 4	<0.12 mHz	0.01 mHz	<0.1 mHz	<0.01 mHz	0.64 mHz

Filter Efficiency (hard 1000)

Matthias Danninger 29/04/09

Madison Collaboration Meeting

Solar Search L5

Effective Volume (Neutralino)

Muon Flux Sensitivity (Neutralino)

SD Cross-Section Sensitivity (Neutralino)

VERS

VER.

SD Cross-Section Sensitivity (LKP)

Matthias Danninger 29/04/09

Madison Collaboration Meeting

IV. Difference in Analysis method gain: 2.13 (only linear cuts \rightarrow linear + multivariate) total gain: ~3 Including **SLC** ? gain: VI. Bonus of StringTrigger with SLC (without: L2 60% \rightarrow L5 2%) ? gain: ? VII. New parameters and ideas gain: ? VIII.Improvement in track-reconstruction in *ICDC* (esp. lowE) gain:

Explanation of Improvement

Change from AHA07v1ice \rightarrow AHA07v2ice

Difference in Reconstruction and L1-Filtering

gain: **1.4**

II.

III.

V.

*IC*80*DC*6 vs *IC*80

*IC*80*DC*6 vs *IC*80

Comparison of hard 50 GeV (L4)

Level	<u>IC 80 + DC 6</u>	<u>IC 80</u>	<u>Ratio</u>
atm.v L4	0.37 mHz	0.083 mHz	4.4
L4	1717	286	6
L5	459	132	3.47

Improvement in reconstruction

- \rightarrow keep signal ratio
- \rightarrow decrease $\Psi \rightarrow$ reduce Bg(v)

Improving $\Psi 7^{\circ} \rightarrow 5^{\circ}$

Matthias Danninger 29/04/09

Madison Collaboration Meeting

Improving Ψ + signal ratio

Conclusion + Outlook

- More 'stable' study with actual geometry settings
- Only using established analysis steps
- Markedly improvement in sensitivities (10 y. observation \rightarrow 1 y.)
- Room for plenty of improvement:

(SLC, new/changed parameters and analysis ideas incl. DeepCore)

- **But**, to really utilize the full DeepCore potential
 - \rightarrow improvement in track-reconstruction for combined *IC80-DC6* essential

Thank You

http://icecube.wisc.edu/~mda65/IC80DC6

Additional Slides

Effective volume (m³)

10⁷

10⁶

10⁵

ُ 10²

10³

Neutralino mass (GeV)

10²

28

10³ Neutralino mass (GeV)

*IC*80*DC*6 vs *IC*80

Comparison of hard 50 GeV (L4)

Level	<u>IC 80 + DC 6</u>	<u>IC 80</u>	<u>Ratio</u>
$atm{v}$ L4	0.37 mHz	0.083 mHz	4.4
L4	1717	286	6
L5	459	132	3.47

Improvement in reconstruction

- \rightarrow keep signal ratio
- \rightarrow decrease $\Psi \rightarrow$ reduce Bg(v)